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Abstract. During May 2003 the Department of Energy’s Atmospheric Radiation

Measurement Program conducted an Intensive Operations Period (IOP) to measure

the radiative effects of aerosol and clouds. A suite of both in-situ and remote sensing

measurements were available to measure aerosol and cloud parameters. This paper

has three main goals: First, it focuses on comparison between in-situ retrievals of

the radiatively important drop effective radius re, and various satellite, airborne, and

surface remote sensing retrievals of the same parameter. On May 17 2003 there was

a fortuitous, near-simultaneous sampling of a stratus cloud by five different methods.

The retrievals of re agree with one another to within ∼ 20%, which is approximately

the error estimate for most methods. Second, a methodology for deriving a best

estimate of re from these different instruments, with their different physical properties

and sampling volumes, is proposed and applied to the May 17 event. Third, the paper

examines the response of re to changes in aerosol on three days during the experiment

and examines the consistency of remote sensing and in-situ measurements of the effect

of aerosol on re. It is shown that in spite of the generally good agreement in derived

re, the magnitude of the response of re to changes in aerosol is quite sensitive to

the method of retrieving re, and to the aerosol proxy for cloud condensation nuclei.

Non-physical responses are sometimes noted and it is suggested that further work

needs to be done to refine these techniques.
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1. Introduction

The effect of suspended atmospheric particles, or aerosol, on the microphysics of

clouds has for decades been the subject of intense scrutiny. Twomey [1974] proposed

that for a constant amount of condensed water, an increase in the number of cloud

condensation nuclei (CCN) will generate a cloud that consists of smaller drops and

reflects more energy to space. This process is commonly referred to as the “first

aerosol indirect effect”. The ensuing decades have seen intensive field campaigns [e.g.,

Leaitch et al., 1996; Brenguier et al., 2000; Ramanathan et al., 2001], particularly

in ship tracks, where aerosol influences on stratocumulus clouds are distinctly visible

[Durkee et al., 2000]. In recent years, satellite remote sensors have been employed

to provide a regional [Kaufman and Nakajima, 1993; Rosenfeld and Lensky, 1998]

and even global view [Han et al., 1998; Nakajima et al., 2001; Bréon et al., 2002]

of aerosol effects on clouds. More recently still, surface-based remote sensors have

examined aerosol effects on clouds based on high temporal/spatial resolution data

[Feingold et al., 2003] and longer term analyses [Kim et al., 2003; Garrett et al.,

2004] at a few select sites.

While there is ample evidence that an increase in aerosol tends to decrease cloud drop

size and increase cloud reflectance, many questions remain concerning the degree to

which this occurs, the most important controlling parameters, and the measurement

requirements for these parameters. For example, although the concept of the first

indirect effect posed by Twomey [1974] clearly states that the comparison be made

between clouds having the same liquid water content, many studies have ignored

this requirement. Therefore, it is unclear whether drop sizes are smaller because of

higher CCN concentrations or because of lower condensed water [Schwartz et al.,

2002]. Other important questions include the relative importance of cloud dynamics

(particularly updraft velocity), aerosol composition, and aerosol size distribution

[Feingold, 2003]. Although it is clear that aerosol effects on clouds extend to

cloud lifetime, precipitation [Warner, 1968; Albrecht, 1989], and cloud dynamics,
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an understanding of the magnitude of the first indirect effect is in and of itself a

worthy goal.

Because field campaigns are limited in scope and duration, it is desirable to evaluate

the first indirect effect in a continuous fashion using remote sensing. However, it

is important to establish whether these remote sensors can measure the required

parameters, and whether they can do so with sufficient sensitivity. Aerosol optical

depth (AOD), a parameter readily measured by satellites and surface networks such

as the Aerosol Robotic Network (AERONET) [Holben et al., 1998], is often used to

represent CCN [Kaufman and Nakajima, 1993]; however, Feingold [2003] showed that

AOD may not always be a good proxy for the CCN affecting the cloud. There are two

reasons: first, the path-integrated nature of the measurement means that variations

in the aerosol entering the cloud may not be captured by the AOD, and second,

because the existence of variability in the aerosol size distribution and composition

will reduce the overall response of drop size to AOD [Feingold , 2003]. Nakajima

et al., [2001] proposed the use of an “aerosol index” (the product of the AOD and

Ångström exponent) and showed that a higher sensitivity of aerosol effects on cloud

can be obtained. In spite of this inherent sensitivity associated with the aerosol index,

Bréon et al. [2002] found a much weaker response of cloud drop size to changes in the

aerosol index than expected from theory. The reasons could be rooted in variability

in cloud water and aerosol size and composition [Feingold, 2003], or perhaps due to

biases in the types of clouds observed [Rosenfeld and Feingold, 2003].

The motivation of this paper is threefold: (i) to establish whether there is agreement

between remotely sensed measures of cloud drop effective radius re (= 〈r3〉/〈r2〉,
where 〈rn〉 is the nth moment of the drop size distribution) in a relatively

homogeneous stratus cloud that covered the surface measurement site at the Southern

Great Plains site in Oklahoma on May 17 2003; (ii) to develop a rigorous mathematical

methodology for retrieving a best estimate of drop size from a variety of different

instruments with different temporal resolutions, sampling volumes, and physical bases
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for measurement; and (iii) to establish whether a measure of the first indirect effect

derived from different drop-size retrievals and different CCN proxies yields consistent

results. This exercise is a small step in establishing the extent to which remote sensors

can be relied upon to quantify the first aerosol indirect effect. We begin with a brief

description of the instruments and retrieval techniques used by the various in-situ

and remote sensors. We then show results pertaining to the three goals and conclude

with discussion and a summary.

2. Instrumentation

The instruments used in this study are the following:

(i) A ground-based Microwave Radiometer (MWR) [Liljegren, 1999];

(ii) A ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR)

[Harrison and Michalsky, 1994];

(iii) A ground-based Millimeter Cloud Radar (MMCR) [Moran et al., 1997];

(iv) An airborne Solar Spectral Flux Radiometer (SSFR) [Pilewskie et al., 2003];

(v) The satellite-based Moderate-Resolution Imaging Spectroradiometer (MODIS)

[Guenther et al., 2002];

(vi) The Cloud, Aerosol, and Precipitation Spectrometer (CAPS) in-situ airborne

probe [Baumgardner et al., 2001].

Below we provide a brief description of the instruments and Table 1 summarizes some

of their sampling characteristics.

(i) MWR

The Microwave Radiometer measures time series of column-integrated water vapor

and liquid water based on the microwave emissions of atmospheric vapor and liquid

water molecules at specific frequencies. By measuring water vapor emissions at 23.8
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GHz and liquid water emissions at 31.4 GHz, both water vapor and liquid water can

be separated. Typical uncertainties in the column-integrated liquid water (LWP) are

25–30 g m−2.

(ii) MFRSR

The MFRSR measures spectral direct normal, diffuse horizontal, and total horizontal

solar irradiances at nominal wavelengths of 415, 500, 615, 673, 870, and 940

nm every 20 seconds. The MFRSR allows accurate determination of atmospheric

transmittances without requiring absolute calibration because it measures both total

horizontal irradiance and direct-normal irradiance using the same detectors by a

blocking technique. Consequently, Langley regression of the direct-normal irradiance

taken on stable clear days can be used to extrapolate the instrument’s response to the

top-of-the-atmosphere, and this calibration can then be applied to the total horizontal

irradiance on overcast periods. Transmittances are calculated subsequently under

cloudy conditions as the ratio of the uncalibrated MFRSR signal to the extrapolated

top-of-the-atmosphere value.

Min and Harrison [1996a] and Min et al. [2004] have developed a family of inversion

methods to infer cloud optical properties from MFRSR combined with MWR. As

is standard, the cloud radiative properties are parameterized in terms of a cloud

averaged drop effective radius re, and total liquid water path, LWP, based on

Mie theory [Hu and Stamnes, 1993]. Using total horizontal transmittance at 415

nm, together with LWP, one can simultaneously retrieve cloud optical depth and

re through the use of a nonlinear least squares minimization in conjunction with an

adjoint method of radiative transfer [Min and Harrison, 1996b].

Based on extensive comparison with in-situ measurements [Min and Harrison, 1998;

Barnard et al., 2001], it is estimated that for single-layer, warm clouds, the MFRSR-

derived re agree to within 5.5% with in-situ measurements. Sensitivity studies also

illustrate that for this case, a 13% uncertainty in observed LWP (20 g m−2) results in

a 1.5% difference in retrieved cloud optical depth, and an average uncertainty in re of
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12.7%. The uncertainty of the LWP measured by the MWR is the major contributor

to the uncertainty in retrieved re [Min et al., 2003].

The instantaneous effective “footprint” of a cloud sampled by the MFRSR is a circle

of radius ∼ 1 km (or about 3 times the “radiative smoothing scale”). The data are

recorded at 5 min resolution which, at an advective velocity scale of 3 m s−1 for the

day in question, translates to a footprint with a radius equal to 900 m, i.e., roughly

the size of the instantaneous footprint Min et al. [2001]. In general, the footprint

depends on the cloud height.

(iii) MMCR

The Millimeter Cloud Radar is a highly sensitive, vertically pointing, Doppler radar

operating at a wavelength of 8.6 mm, designed to measure clouds. The MMCR has

a 0.19◦ beam width and a 45 m range gate. Its velocity resolution is 0.1 m s−1 . At

an altitude of 1200 m, the sample volume is ∼ 700 m3.

The MMCR drop-size retrieval was first published by Frisch et al. [1995] and later

updated by Frisch et al. [2002]. The basic methodology consists of combining a radar

profile of reflectivity Z with a microwave radiometer constraint on path-integrated

liquid water content (LWP) to produce a system of N + 1 measurements at N range

gates. Using a drop-size distribution model and an assumption of a fixed spectral

dispersion (σ = the natural log of the geometric standard deviation = constant),

the system of equations is solved to produce a profile of re and a constant (with

height) drop concentration Nd. It is the only one of the remote sensing techniques

that produces a drop-size profile. Because of the very high sensitivity of reflectivity

to drop size, drizzling clouds are avoided by only considering conditions for which Z

< -17 dBZ. The existence of even small concentrations of large drizzle drops could

produce significant reflectivity signal and bias drop-size retrievals.

Frisch et al. [2002] showed that more robust retrievals can be obtained by further

requiring Nd to be a fixed constant, with minimal effect on accuracy of the retrieval
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of re because re ∝ (Z/Nd)1/6. Typical values for the appropriate aerosol conditions

can be assumed. The Frisch et al. [2002] algorithm is adopted here, with further

scaling of the retrieved re profile such that the retrieved LWP is the same as that

measured by MWR. The error in re can be shown [Frisch et al., 2002] to be:

∆re(z)
re(z)

∼ ±
[(

∆Z

6Z(z)

)2

+ (4σ∆σ)2 +
(

∆LWP
3LWP

)2
]1/2

. (1)

With typical errors in Z of 1 dBZ, σ of 0.1, and LWP of 30 g m−2, respectively, the

error in re is ∼ 16%.

(iv) SSFR

During the IOP the SSFR was integrated onto the CIRPAS Twin Otter aircraft to

measure upwelling- and downwelling-solar spectral irradiance. The SSFR comprises

a pair of identical spectrometers that measure in the spectral region between 300

nm and 1700 nm. Pairs of Zeiss Monolithic Miniature Spectrometer Modules (MMS

1 and MMS NIR) are used for simultaneous zenith and nadir viewing. The MMS-

1 modules are temperature stabilized at 27◦ C ± 0.3◦ C and the MMS-NIR are

thermoelectrically cooled to 0◦ C. Spectral resolution is 9 nm for the MMS-1 and

12 nm for the MMS-NIR. In-flight integration time for each of the spectrometers is

nominally 100 ms. The spectral sampling rate is approximately 1 Hz. The SSFR is

calibrated for wavelength response, angular response, and absolute spectral power.

Estimated RMS uncertainty across the spectrum is 3% to 5% for the SSFR spectral

range between 350 and 1700 nm; precision is between 0.1% and 0.3%.

The spectral irradiance reflected at cloud top was normalized by the downwelling

spectral irradiance to determine the spectral albedo of the cloud. These data contain

the necessary information to infer re and cloud optical depth τd, the product of

which is proportional to LWP. The retrieval procedure determines the (re; τd) pair

from libraries of computed cloud spectral albedo over a broad range in re and τd.

The radiative transfer code has been described in Bergstrom et al. [2003]. A search
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algorithm using as few as five wavelengths and similar to that of Twomey and Cocks

[1989], is used to determine the closest match to the measured spectral albedo. The

measurement-model residuals for most cases are found to be less than 5% and close

to the uncertainty in the measurements.

For hemispheric irradiance measurements, and assuming an isotropic radiation field,

half of the measured signal is derived from within 45◦ of normal incidence. Therefore,

we define the footprint of SSFR to be a circle of radius equal to the distance from

the aircraft to cloud, which for the case under discussion is 2700 m.

(v) MODIS

The retrieval of re and τd is made from simultaneous measurements in one water-

absorbing band (1.6, 2.1 or 3.7 µm) and one nonabsorbing band (0.65, 0.86 or 1.2

µm). The cloud must first be identified as either a water cloud or an ice cloud. Then

the measured reflectances are matched to a lookup table of calculated reflectances,

which have been calculated separately for either water or ice. The resulting product

is produced at 1 km resolution for high elevation angles but is somewhat coarser

for lower elevation angles. The nonabsorbing band is chosen to minimize the effect

of surface reflectance in the retrieval, and only one of those bands is used in each

retrieval. However, the retrieval is performed separately for each of the three water-

absorbing bands and all three results are reported [Platnick et al., 2003]. The three

wavelengths provide limited information on the vertical distribution of the droplet

effective radius, but all are weighted towards the cloud top. Retrieval uncertainty

is dependent on many factors including τd, geometry of the observation and surface

type and reflectance. Typical uncertainties range from 5 to 10% for homogeneous

unbroken clouds.

(vi) CAPS

The CAPS (Cloud-Aerosol-Precipitation-Spectrometer) probe (Droplet Measurement

Technologies, Boulder, Colorado) is an airborne in-situ device consisting of a
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combination of forward and backscatter sensors covering the diameter range from

∼ 0.8 to 50 µm and an occultation sensor that sizes drops in the 25 – 1500 µm

diameter range. The scatter probe was operated with 20-channel resolution, where

channel boundaries were set at equal logarithmic pulse height intervals. As a result,

resolution was high in the lower size bins (about 0.3 µm per bin) and lower in the

higher bins (approximately 5 µm per bin). The CAPS probe flew on the CIRPAS

Twin Otter aircraft and sampled at a rate of 1 Hz, which at the aircraft speed of ∼ 50

m s−1 corresponds to a length scale of 50 m. The sample area is 120 µm × 1.1 mm,

resulting in an approximate sampling volume of ∼ 6.6 cm3. Note that although this

type of measurement provides what is often regarded as our most accurate measure of

drop size, the sample volume is significantly smaller than those of the remote sensors.

The pulse height distributions measured by the forward scatter section of the CAPS

probe were inverted to particle size distributions based on calibrations and theoretical

estimations of the probe’s response. Considerable uncertainties are inherent in this

inversion process, particularly in the range of sizes that are affected by Mie resonances.

In this size range (between 1 and 10 µm diameter), water droplets having several

different diameters may generate identical scattered light pulses. There is therefore

no certain link from a measured pulse to a particular diameter. The range of possible

diameters varies by a factor of 2. For particles larger than 10 µm in diameter, the

Mie oscillations in the probe’s response dampen considerably, and the uncertainty in

the inverted values shrinks to approximately 30%.

Uncertainty in particle concentration measured by the CAPS scatter probe is

dominated by an inability to accurately measure the active area of the laser, which

along with the true airspeed of the airplane determines the probe’s viewing volume.

Instead, values furnished by the manufacturer must be used, that are mainly based

on design and manufacturing tolerances. Confidence in the view volume estimates

may however be attained by comparing particle size distributions obtained in dry air

by the CAPS probe with those simultaneously measured by the overlapping channels
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in the PCASP (Passive Cavity Aerosol Spectrometer Probe), where concentration

determination rests on a sample flow measurement. Further comparisons with other

independent measurements, such as liquid water content, further bolster confidence.

A quantitative estimate of uncertainty in view volume (concentration) is not ventured

here, but comparisons as described above have yielded what may be characterized as

good agreement and consistency. Considering all these effects we estimate that the

accuracy in retrieved re is 15 – 20%.

We note that the remote retrievals of re for the most part use quite different

approaches (Table 1). The two downward looking instruments, SSFR and MODIS,

use conceptually similar solar spectrometer methods, neither of which relies on an

independent measure of LWP. They both directly measure re, i.e., 〈r3〉/〈r2〉. The

two surface-based remote measurements, MFRSR and MMCR, are quite different

in that they use passive, visible radiometry (∝ 〈r2〉) and active, microwave radar

(∝ 〈r6〉), respectively. Both methods rely on an independent measure of LWP (∝ 〈r3〉)
by MWR. The radar retrieval of re by MMCR is the only method that can provide

profiles of re, both day and night, but it is also the most sensitive to drizzle. All other

methods yield either cloud-top weighted re (SSFR and MODIS), or cloud averaged

re (MFRSR), during daylight hours when the solar elevation angle is sufficiently high.

3. Results

3.1. General

The conditions on May 17 2003 were characterized by light northerly flow of about 3 m

s−1 (in the boundary layer) following passage of a low pressure system. Figures 1 and

2 provide Aqua satellite, surface radar (MMCR), and surface microwave radiometer

(MWR) views of the clouds. Cloud cover was relatively homogeneous following a

period of light drizzle that ended at about 17:00 UTC, with a tendency to thin as

daytime heating progressed. Our analysis is restricted to the period after 17:00 UTC.

(Henceforth all references to time are in hours UTC.) LWPs ranged from ∼ 200

g m−2 to 10 g m−2 (Figure 2b) and decreased steadily over the analysis period.
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This case provided a useful target cloud for comparing the various retrieval methods

because (a) the relative homogeneity of the cloud provides higher confidence in the

optical remote sensing retrievals of re produced by MFRSR and SSFR, and (b) radar

reflectivities were less than -20 dBZ and therefore the clouds were unlikely to have

contained drizzle drops.

The CIRPAS Twin Otter aircraft took off from the Ponca City, Oklahoma airport at

approximately 18:48 h. Soon after (19:01 h) it penetrated the cloud (Figure 3) which

was characterized by liquid water content (LWC) of up to 0.3 g m−3, Nd of 400 –

500 cm−3 and re of 5 – 6 µm. At the time of penetration, the aircraft was 30 km

from the SGP site. At 19:48 h, the aircraft flew over the SGP site (latitude +36.605,

longitude −97.489) at an altitude of 4200 m, or about 2700 m above the cloud top.

The downward looking SSFR retrieved an re at this time of ∼ 5 µm (Figure 4). Time

series plots of the MMCR and MFRSR re are shown in Figure 5 and indicate re of

∼ 6 µm at the time of the overflight.

The Aqua satellite carrying MODIS passed over the site at 18:45 h with a peak

elevation angle of 27◦ . The MODIS-retrieved re is depicted in Figure 6 as a spatial

histogram; The size of each box is approximately 2 km (in the N-S direction) × 4.8

km (in the E-W direction) owing to the relatively low elevation angle.

We note good consistency between all measures of re with differences on the order of

20%, i.e., at the level of uncertainty associated with the retrievals.

3.2. Drop-size Retrieval Comparisons: A Methodology for Comparing

Retrievals by Instruments with Different Sampling Characteristics

The different methodologies for retrieving re (e.g., passive radiometry vs. active

radar), and different viewing angles, sample volumes, and averaging times associated

with the various instruments present an interesting case when attempting to derive

a best estimate of drop size. In the following section, we describe a methodology for

doing so that is based on the method of optimal estimation. Its application should

11



be considered illustrative and exploratory as various assumptions and simplifications

have been applied. It is intended to lay the groundwork and approach for more

extensive comparisons and retrievals in future work.

3.2.1. Combining Different Scales and Uncertainties

In keeping with our notation, we denote the cloud drop effective radius at height

above ground level h, time t and horizontal location s with re(h, t, s). For the present

approach, we assume that for sufficiently small spatial and temporal scales, re does

not change systematically, either horizontally or with time. We use a first-order

approximation for the functional dependence of re on h based on an adiabatic cloud

with fixed Nd,

re(h, t, s) = θ1 + θ2h
1/3 + Z, (2)

where Z is a Gaussian process modeling the remaining spatial and temporal variability

of the cloud, i.e., the small-scale cloud structure. The mean of the process Z is zero,

but the variance of Z may change in a complex manner. Note that the model is linear

in the parameters of interest, i.e., the intercept θ1 and the slope θ2. The objective

is to combine the different types of retrievals by accounting for the sample volumes,

averaging times, and retrieval uncertainties to derive estimates for θ1 and θ2.

The retrievals from the instruments having the smallest sampling volume are

considered “point” retrievals; the others are integrated and/or weighted over some

spatial domain. For example, the MODIS data represent the quantity

1
|H|

1
|S|

1
|T |

∫

H

∫

S

∫

T
re(h, t, s) ωMODIS(h, t, s)dt ds dh (3)

where H, S, and T represent the cloud column, footprint region, and time frame, and

ωMODIS is a weighting function describing the contribution to reflectance as a function

of height in the cloud. The form of these weighting functions is closely tied to the

vertical structure of the cloud, and to the solar zenith and viewing angles [Platnick

2000]. In the current example we simplify the choice of weighting to an exponential

function, which is only strictly true if penetration depth is defined as the level at
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which photons encounter their first scattering. To obtain a sense of the sensitivity

to weighting function, we will apply two different exponential forms. The choice of

weighting functions for MODIS and the other instruments is discussed further in the

Appendix.

Similar relationships to (3) hold for the other retrievals. A major advantage of the

linearity assumption (2) is that integrals as in (3) are still linear in θ1 and θ2.

The key assumption in the statistical model is that the retrievals are unbiased values of

the true (integrated) re, i.e., that there are no systematic errors in the retrievals (e.g.,

possible biases due to broken clouds). However, we allow for zero mean symmetrical

retrieval errors of different magnitudes for each of the instruments. For simplicity,

all errors are assumed to be Gaussian and uncorrelated between instruments. For

each instrument we allow for correlation within height, time and horizontal position.

Then, stacking all the retrievals into a single vector, say R, we can write

R = M θ + ε, Cov(ε)=Σ, (4)

where M is the so-called design matrix, θ = (θ1, θ2)T , and the random vector ε

consists of the retrieval errors and the process Z. The first column of the matrix

M contains ones; the entries of the second column depend on the corresponding

retrievals. For “point” retrievals at height h the corresponding entry is h1/3, whereas

for MODIS data it is
1
|H|

∫

H
h1/3ωMODIS(h)dh, (5)

provided the weighting function depends on height only, and so on (see also

Appendix).

Equation (4) represents a linear regression model with correlated errors. The

parameter of interest θ can be estimated with a generalized least squares approach,

i.e., by minimizing a cost function consisting of the sum of weighted squared errors.

The solution to this minimization problem is

θ̂ = (MT Σ−1 M)−1 MT Σ−1 R, (6)
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Cov(θ̂) = (MT Σ−1M)−1, (7)

from which we can derive confidence intervals or statistical hypothesis tests for the

parameters θ1 and θ2.

The statistical model relies on a few reasonable assumptions. First, we assume a

simple linear relationship between re and the height function h1/3. If we impose

θ2 = 0, then the estimate of θ1 gives us the best overall estimate of the drop size.

Further, it is possible to change the height function to any arbitrary function of h,

parameterized by a parameter vector θ, although we see no reason to add complexity

of this kind for the illustrative example presented here. Second, we impose a Gaussian

structure on Z and the retrieval errors, which is reasonable based on the analysis of

the data of May 17. However, this assumption could be relaxed to other zero-mean

variates, for which the solution given in Equation (6) is still the best linear unbiased

estimator. In this case, however, the associated tests and confidence intervals would

need some adjustment.

3.2.2. Data and Parameter Selection

We are in the fortunate position of having a great deal of data (on the order of

10,000) and the model has very few parameters of interest (two in our case). For the

statistical analysis, we cannot use all the retrievals during the operational period. We

will only consider data within a spatial and temporal window in which we assume

that the cloud has no systematic variability. The in-situ CAPS measurements were

taken 30 km from the SGP site, a distance too large to assume cloud homogeneity.

This can be seen by considering that the advective velocity scale of 3 m s−1 and the

distance of 30 km correspond to a characteristic time scale of nearly 3 h. Over this

period of time, Figure 2 indicates significant changes in cloud structure. Physical

examination of the clouds at each location suggests a different structure, for example,

the cloud top is roughly 200 m lower at the SGP site compared to the CAPS cloud

penetration location. Furthermore, the SSFR data are highly correlated in time and

the inclusion of many retrievals does not increase the information content compared
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to very few uncorrelated retrievals.

As in any dynamical system, there is no absolute criterion for homogeneity or

stationarity, and it is a nontrivial task to determine the spatial and temporal window

within which we can assume “local” stationarity. There is no universal tool to perform

the data selection and this part requires intervention by the scientist.

The model has several additional (nuisance) parameters, such as the error correlation

structure and the weighting functions. Most of these parameters are not available

and only rough bounds are known. However, the model presented above does allow

parameter checking. After fitting a linear model, it is possible to use statistical

inference to verify the model assumptions.

3.2.3. Numerical Example

The aforementioned discussion leads to the following data selection:

• MFRSR: 6 retrievals over a 30-minute period between 19:20 h and 19:50 h;

• MMCR: 91 column retrievals between 19:20 h and 19:50 h (the lowest and

uppermost radar range gates have been eliminated, resulting in a total of 688

values);

• SSFR: 3 retrievals between 19:47 h and 19:49 h. We thin the data to eliminate

the high correlation intrinsic to the data;

• MODIS: 3 × 3 pixels of size 2 km×4.8 km, centered at the SGP site at 18:45 h.

Although the MODIS data were measured 35 min before the analysis window they

exhibit similar optical depths to those measured during the 30 minute period.

They exhibit no spatial correlation (Figure 6) and are therefore deemed suitable

for use in the analysis.

This selection essentially covers a spatial window of approximately 6 km or 35 minutes

to include the SSFR and MODIS data.
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For the selected data points, the design matrix M and the covariance matrix Σ have to

be specified, as discussed in detail in the Appendix. Based on Figure 2a, it is assumed

that the cloud extends from h = 675 m to 1350 m. We assume that the weighting

function for MFRSR (transmission measurement) is constant throughout the cloud

column, which is a reasonable first-order approximation for the current exercise

[Platnick 2000]. For both SSFR and MODIS, we use an exponential weighting related

to the penetration depth. In reality SSFR and MODIS weighting functions differ and,

as discussed earlier, are not strictly exponential. This weighting is therefore varied

to explore sensitivity of the retrieved re profile. For the covariance matrix, we need

to determine the correlation structure of Z and specify the retrieval errors. However,

separating the retrieval error from other small-scale structures is a nontrivial problem

[Cressie, 1993, pages 112ff]; therefore, we directly specify the covariance matrix. For

the MMCR data we modeled temporal and spatial correlation not extending over

more than 200 m, the typical size of the large eddies; however the CAPS data would

even support smaller correlation lengths. Further, it is assumed that the variation of

Z is much smaller than the retrieval errors, a fact confirmed after model fitting. The

other retrievals are assumed to be independent, as indicated by the data.

Applying the above methodology and parameters (exponential weighting function

having 1/17 m decay) the estimated values for the intercept θ1 and the slope θ2

are 2.31 and 0.38 with 95% confidence intervals [2.31 ± 1.17] and [0.38 ± 0.12]

respectively. For cloud bottom and cloud top re is estimated to be 5.57µm and 6.54µm

respectively. Note that both parameters are statistically significantly different from

zero. The percentage of variance explained by the linear model (R2 or coefficient of

determination) is 97.6%. When we decrease the decay rate of the weighting function

from 1/17 m to 1/340 m, the 95% confidence intervals of the parameters change to

[4.45±1.58] and [0.17±0.16] respectively. Figure 7 summarizes the selected data and

the best estimate(s) for the example presented. We note the effect of the choice of the

weighting function on re ; the slower decaying exponential tends to create less vertical

variation in re by allowing the influence of MODIS and SSFR data to penetrate to
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deeper levels in the cloud. These differences are expected to be somewhat smaller

for more reasonable variability in weighting function. Nevertheless, we stress the

importance of appropriate attention to weighting functions for all instruments when

retrievals of this kind are applied (see further discussion in the Appendix).

To illustrate the importance of taking into account the covariance matrix Σ, we also

calculate the estimate without using weighted squared errors, as well as the global

mean. Since the MODIS retrievals have a small retrieval error, they receive larger

weights than SSFR and MFRSR, which explains the difference between the weighted

and unweighted fits. For a small decay rate of the weighting function the MODIS

data induce a leveraging effect. The MFRSR retrievals and the small re retrievals of

the MMCR higher up in the cloud induce large residuals that do not exhibit a perfect

Gaussian distribution.

4. Aerosol Effects on Clouds

The third part of this paper focuses on the first aerosol indirect effect and

measurement thereof using surface-based remote sensors. Although the first indirect

effect is primarily a question of changes in cloud reflectance due to changes in

aerosol, at the heart of this problem is the relationship between cloud drop number

concentration Nd and aerosol number concentration Na, or, for clouds of equal LWC,

the relationship between re and Na. Assuming sub-cloud lidar extinction to be a

proxy for CCN, Feingold et al. [2003] used MMCR and MWR to retrieve re and

examined changes in re as a function of changes in sub-cloud lidar extinction. The

method can provide a short time scale (∼ 20 s) view of cloud response to changes

in the aerosol entering the cloud base. Using the radar’s Doppler capability, one can

conditionally sample the updrafts to focus on activation zones. A range-resolved

aerosol measurement such as lidar extinction is valuable because surface aerosol

measurements may not be useful when the boundary layer is poorly mixed, or when a

surface stable layer exists. Sorting by LWP removes the ambiguity in the relationship

between aerosol and re versus that between LWP and re. Kim et al. [2003] and
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Garrett et al. [2004] performed similar analyses at SGP and at the North Slope of

Alaska (NSA) site, respectively, but used surface aerosol scattering as a proxy for

CCN and retrieved re using MFRSR and MWR. Their analyses considered much

longer sampling periods (months to years).

In the following we present an analysis of retrievals pertaining to the first indirect

effect by calculating

IE = −dlnre

dlnα
, (8)

[Feingold et al., 2001], where re represents a vertically-averaged (weighted by LWC)

effective radius, and α is the extinction from the Raman lidar at a wavelength of 355

nm, at a prescribed altitude. Note that a positive IE indicates a decrease in drop size

with increasing aerosol extinction. The calculation of IE is useful because, being a

function of the relationship between Nd and Na, it can be compared to theoretically

derived values (Nd ∝ N3×IE
a ); for example, Twomey [1977] predicted Nd ∝ N0.7

a

or an IE of ∼ 0.23. Moreover, IE is bounded and < 0.33. A further advantage

of calculating the logarithmic slope is that it is a relative, rather than an absolute

measure of the response of drop size to changes in aerosol.

Figure 8 shows plots of re vs α for three days, May 8, 13, and 17 which were

deemed suitable for the analysis, having met the requirements of being single layered,

nonprecipitating, boundary layer clouds. Data are plotted on the same axes to

illustrate the strong differences in aerosol conditions on the three days. On May

8 aerosol loadings were abnormally high (α ∼ 1.0); May 13 and 17 had α ∼ 0.3. IE is

calculated from a least-absolute-deviation fit to the points. We stress that the values

of IE are independent of the assumed value of Nd used in the MMCR retrieval of

re (section 2 (iii)) because of the definition of IE. A line with slope 0.33 and arbitrary

intercept is superimposed on each plot. In each case the data are stratified by LWP

to try to minimize the effect of LWP on re. A finer LWP binning to that used here is

generally preferred [Feingold et al., 2003] but this frequently results in an unreliable

regression due to a dearth of data. A general separation in re for the three LWP
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bins is clear. Note that on May 13, there is a great deal of scatter in the data and

nonphysical IE > 0.33 are calculated.

Table 2 performs a similar analysis for a broader set of parameters: re is calculated

using either the MFRSR or radar data, together with various proxies for cloud

condensation nuclei; lidar extinction (355 nm) at an altitude of 350 m; surface aerosol

scattering (550 nm) σsp,g; and surface aerosol number concentration Na of particles

> 0.1 µm diameter measured by a PCASP. For MMCR, the data are broken down

by day, and in addition data from all three days are grouped together. When re is

derived from MFRSR, IE has not been calculated on individual days because the 5

min temporal resolution yields too few points for reliable regression. Table 2 suggests

that IE is very sensitive to the re retrieval method, as well as to the CCN proxy. The

radar-derived re shows fairly consistent, and physically plausible positive IE values

when aerosol extinction is used as a CCN proxy on May 8 and 17 but, as stated

before, on May 13 the values can be unrealistically high. Use of Na and σsp,g as

proxies results in highly variable and even negative IE on individual days but when

the days are grouped together, results using α and σsp,g are similar. Na tends to be an

unreliable proxy for CCN in spite of the fact that it should be the most tightly related

to the aerosol population from which CCN derive. This may be due to decoupling

between the surface Na and the aerosol entering the cloud, although σsp,g is also a

surface measurement and yields a more robust IE. It may also reflect situations where

the CCN derive from particles smaller than the lower size limit of the PCASP (< 0.1

µm diameter).

For the MFRSR re, the grouped data indicate a consistent IE of 0.36 in the highest

LWP bin when either α or σbsp,g are used. (Note that similar values are obtained

by the radar-derived re, although at lower LWP.) At lower LWPs, IE tends to be

nonphysical and highly variable. Differences in IE between MFRSR and MMCR can

be due to a number of factors including differences in retrieved re, as well as differences

in the number of data points in the regression stemming from the disparity in temporal
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resolution. (There are roughly 15 × more data points in the MMCR analyses.) Data

sets pertaining to much longer sampling periods could be used to improve MFRSR

statistics [as was done by Kim et al., 2003].

Regarding the radar-derived re, we consider whether the differences in IE among

the three days (Figure 8) is a function of other aerosol physical characteristics.

Calculations of the aerosol uptake of water vapor [f(RH)] by both nephelometer

and lidar [Pahlow et al., 2005] suggest higher f(RH) on May 17, whereas the highest

IE is on May 13. Unfortunately, there are just too few cases from which to draw

conclusions, or to consider extending this analysis to other measurements such as the

Ångström exponent or single scattering albedo.

5. Discussion and Summary

This paper has examined three cloudy events during the ARM May 2003 aerosol

intensive operations period. The focus has been on (i) comparison of five different

methods of drop effective radius re retrieval for a cloud with extensive cover on May 17

2003; (ii) presentation of a general methodology for deriving a best estimate of re from

instruments with disparate sampling volumes, footprints and spatial resolutions; and

(iii) comparison of a relationship closely tied to the first aerosol indirect effect (the

relationship between re and aerosol, as quantified by Equation 8) based on different

re retrievals and different proxies for CCN.

On May 17 2003 a nonprecipitating cloud (radar reflectivity ∼ -20 dBZ) with

LWP on the order of 100 g m−2 was sampled with a variety of instruments.

The target cloud was ideal in that it was relatively homogeneous at the spatial

scale of the remote sensors, and thus amenable to robust retrievals by remote

sensors employing optical retrievals. The absence of drizzle made it a good target

cloud for drop-size retrieval by a cloud radar. We have shown that there is good

agreement (within ∼ 20%) between re retrievals from the collocated airborne spectral

solar flux radiometer (SSFR), the surface-based Multi-Filter Rotating Shadowband

Radiometer (MFRSR), a cloud radar (MMCR), and the satellite-borne Moderate-
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Resolution Imaging Spectroradiometer (MODIS). An airborne in-situ Cloud-Aerosol-

Precipitation-Spectrometer (CAPS) probe about 30 km away yielded consistent

measurement of re, although horizontal variability in the cloud at this scale makes it

difficult to make direct comparison.

A general methodology for retrieving a best estimate of re from a variety of remote

sensors, each with different sampling characteristics, has been presented and applied

to the May 17 case. The approach is based on a generalized least squares approach,

i.e., minimization of a cost function consisting of the weighted squared errors. The

method incorporates information on the height dependence of re from the radar,

and temporal/spatial averages for the spectrometers and radiometers. For the case

in question, the best-estimate profile of re is shown in Figure 7. Sensitivity of this

retrieval to some of the applied weighting functions is also noted and suggests possible

refinements in future studies. We suggest that methodologies of this kind should be

considered when attempting to reconcile geophysical measurements made by a variety

of different instruments.

Finally, on three days during the IOP, re retrievals from the MFRSR and cloud

radar have been used in conjunction with surface aerosol measurements or vertically

pointing lidar to measure the effect of aerosol on cloud drop size. It is shown that

in spite of the general agreement in re derived from MFRSR and radar on May 17,

a measure related to the first aerosol indirect effect (Equation 8) can differ quite

significantly between the two methods. Three choices of CCN proxy are used: lidar

extinction at a height of 350 m, surface aerosol scattering coefficient (at 550 nm), and

surface aerosol accumulation mode number concentration (measured by an in-situ

optical probe). It is shown that both the choice of the re retrieval, and the choice of

proxy, strongly affect the magnitude of the drop-size response to changes in aerosol.

It is suggested that more work needs to be done to determine the most suitable

proxies for CCN and the most appropriate drop-size retrieval method. Unfortunately,

data availability is often limited; for example, the only re retrieval available at night
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is the radar (and MWR) retrieval. Radar retrievals are also routinely available at

high temporal resolution (20 s). However, radar retrievals of re suffer from very high

sensitivity to drop size (〈r6〉-weighting) and are therefore of limited value when drizzle

begins to form. At high enough sun angles, and for horizontally homogeneous clouds,

radiometers such as MFRSR may be preferable, given their relative insensitivity to

large drops. Alternatively, one might consider best estimate retrievals of re such as

the one proposed here, where multiple instruments that routinely measure drop size

are used to produce a more robust measure of re.

From the perspective of CCN proxies, different conditions may also call for different

strategies. Under well-mixed conditions, surface aerosol measurements are likely to be

the most useful, particularly a measure of aerosol concentration for particles greater

than about 25 nm radius. During stable conditions, lidar extinction at some height

beneath the cloud, where aerosol humidification effects are not significant, will be a

better proxy for the aerosol entering cloud base. Refinement of these techniques is

expected to yield valuable data for long-term monitoring of aerosol-cloud interactions

at surface sites and to complement the global coverage of satellites.
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Appendix

We summarize the role of the weighting functions and the construction of the

design matrix M and the covariance matrix Σ used for the weighted least squares

problem illustrated in Section 3.2.3.

Weighting functions: As an illustration, we use an exponential weighting

function for MODIS and SSFR retrievals and a constant weighting throughout

the cloud column for MFRSR retrievals. Whereas the latter is a reasonable

approximation, the former does not represent a penetration depth of multiply

scattered photons Platnick [2000]. Retrievals of re from multiple instruments,

such as MMCR or MFRSR in combination with MWR, require consideration of

more complex weighting functions that take into account the vertical response of

both instruments. Such investigation is beyond the scope of the current paper.

We note that equations of the form of (5) allow one to represent the weighting

function in the least squares problem as the h1/3 weighted center-of-mass but

the exact form of the function does not enter the least squares solution. For

MODIS and SSFR, the quantity given by (5) decreases as the decay rate of the

exponential weight decreases. To illustrate the effect of the decay rate we test

two extreme values, 1/17 m and 1/340 m, which we believe bound the potential

effects of the weighting on the retrieval. Similar arguments with respect to

insensitivity to the exact form of the weighting function apply to MFRSR+MWR

and MMCR+MWR retrievals, but as noted we defer sensitivity studies of this

kind to future work.

Design matrix M: The first column contains ones, the entries in the second

column depends on the measurement device. The weighting function for MODIS

and SSFR have an exponential decay with rate 1/17 m or 1/340 m. Table 3

summarizes the entries. For MODIS and SSFR the integrals were calculated

numerically.

Covariance matrix Σ: As mentioned above, we do not model the retrieval
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error process and the process Z separately. However, it is reasonable to assume

that both processes are independent. Then Σ is simply the sum of the covariance

of the retrieval error and the covariance of the spatial process which are described

below.

First we address the covariance associated with the retrieval errors. We assume

that all the measurement errors and thus the retrieval errors are uncorrelated.

Therefore, the covariance matrix has only non-zero elements on its diagonal

with values related to the retrieval errors as given in Table 1. This assumption

can be justified as follows. Since we have different retrieval techniques and

fundamentally different measurement devices there is no physical reason for

correlations between the different devices. Assuming a homogeneous cloud,

heuristic techniques can be used to justify that the MODIS data do not exhibit

any spatial structure. As mentioned, the SSFR data was thinned to eliminate any

correlation. Even if the MMCR were to have any correlations between retrieval

errors it would be modelled by the correlation of the process Z (see below).

Consider now the covariance associated with the process Z. We first partition Σ

into 4× 4 sub-matrices of different sizes according to the different measurement

devices. For example, the first sub-matrix is associated with MMCR and has

size 688 × 688. We use the high resolution MMCR data to examine the spatio-

temporal structure of the process. We essentially estimate a spatio-temporal

variogram, defined as follows

2γ(|hi − hj |, |ti − tj |) = Var(R(hi, ti)−R(hj , ti)) (A1)

where R(xi) is the MMCR retrieval at height hi and time ti. The empirical

form of the variogram is used to estimate the correlation structure in time and

space. For a detailed discussion on estimating and fitting dependence structures

in correlated data, the reader is referred to Cressie [1993]. An exponential

correlation structure with marginal rates of 1/200 m and 1/100 s describes

the empirical structure sufficiently well. To determine the correlation at lower
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resolutions (MODIS, SSFR, MFRSR) the variogram is simply integrated over the

respective spatial and temporal domain. Since the covariances in the MODIS,

SSFR, MFRSR blocks and all off-diagonal blocks are one to two orders of

magnitude smaller than the retrieval errors, we set all these values to zero.
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Table Captions

Table 1. Summary of various instruments, their sampling characteristics, and

approximate errors in re retrieval. 〈rn〉 denotes the nth moment of the drop

size distribution n(r).

Table 2. Values of IE (Equation 8) derived from re measured by either MFRSR or

MMCR, and from aerosol proxies that include Raman lidar aerosol extinction

(wavelength 355 nm; height = 350 m), surface aerosol scattering σsp,g (measured

by a nephelometer at 550 nm), or surface aerosol concentration Na measured by

a PCASP. For MFRSR, data from all 3 days are grouped together to improve

statistics. Data for Na were not available on May 8. Note that negative values of

IE are nonphysical and suggest an increase in re with increasing aerosol amount.

IE should be bounded by 0 and 0.33.

Table 3. Entries of the second column of the matrix M for the 706 data points. The

numerical values are based on htop = 1350 m and hbot = 675 m for cloud top and

cloud bottom (height above ground level). “MFRSR” indicates re retrieval from

MFRSR and MWR. “MMCR” indicates re retrieval from MMCR and MWR.

Figure Captions

Figure 1. Aqua satellite image of the synoptic scale cloud cover on May 17 2003 at

18:45 UTC.

Figure 2. (a) Time-height cross-section of radar reflectivity from the MMCR at SGP

on May 17; (b) Time series of LWP measured by the microwave radiometer.

Figure 3. Time series of CIRPAS Twin Otter airborne measurements of (a) Nd, (b)

LWC, and (c) re by the CAPS instrument.

Figure 4. Time series of re measured by SSFR on board the CIRPAS Twin Otter

aircraft. The time of overflight of the SGP ground site is indicated by the vertical

dotted line.

Figure 5. Time series of re derived from the surface-based MFRSR and MMCR at
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SGP. The time of the Twin Otter aircraft overflight is marked by a vertical dotted

line.

Figure 6. Spatial depiction of the MODIS-derived re during overpass of SGP. The

individual pixels correspond to 2 km × 4.8 km boxes in the region of SGP. (Boxes

are not exactly to scale.) The central box is the closest to SGP. Colors correspond

to the value of re as indicated by the scale.

Figure 7. Measurements from May 17 2003 used in the best-estimate retrieval of drop

size according to model Equation (2). The red line represents the best estimate

of re with decay rate 1/17 m. The dotted line is for decay rate 1/340 m. Other

line types are as indicated.

Figure 8. re measured by MMCR and MWR plotted vs. aerosol extinction α as

measured by the Raman lidar (at a height of 350 m) for May 8, 13, and 17. Data

are sorted by three fairly broad LWP bands. Values of IE are based on Equation

(8) and indicate the relative change in re for a relative change in extinction.

The solid line has a slope of 0.33 and indicates the theoretical upper limit of IE.

Correlation coefficients between ln (re) and ln (α) are calculated in each of the

LWP bands 50–75 g m−2, 75–113 g m−2, 113–169 g m−2. For May 8, they are

respectively, for each of the LWP bands: -0.05, -0.15, -0.24; May 13: -0.73, -0.51,

-0.25; May 17: -0.28, -0.42, -0.29.
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Parameter

Sampling Sampling Volume/ weighting ∼ error in re,

Time, s Footprint %

MFRSR 300 Circle radius = 1 km 〈r3〉; 〈r2〉 13

MMCR 20 700 m3 〈r6〉; 〈r3〉 15 - 20

SSFR 1 Circle radius = 2.7 km 〈r3〉; 〈r2〉 15 - 20

MODIS 10−4 2 km × 4.8 km 〈r3〉; 〈r2〉 10

CAPS 1 7 cm3 n(r) 15 - 20

Table 1. Summary of various instruments, their sampling characteristics, and approximate

errors in re retrieval. 〈rn〉 denotes the nth moment of the drop size distribution n(r).
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Table 2. Values of IE (Equation 8) derived from re measured by either MFRSR or MMCR,

and from aerosol proxies that include Raman lidar aerosol extinction (wavelength 355

nm; height = 350 m), surface aerosol scattering σsp,g (measured by a nephelometer

at 550 nm), or surface aerosol concentration Na measured by a PCASP. For MFRSR,

data from all 3 days are grouped together to improve statistics. Data for Na were not

available on May 8. Note that negative values of IE are non physical and suggest an

increase in re with increasing aerosol amount. IE should be bounded by 0 and 0.33.
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Data points Weight function Entry
MMCR 688 — h1/3 ∈ [8.77, 11.05]

MFRSR 6 const. 3
4(htop−hbot)

(h4/3
top − h

4/3
bot ) = 9.95

MODIS 9 exp(−rate(htop − h)) 11.01 for rate 1/17 m and

10.35 for rate 1/340 m

SSFR 3 exp(−rate(htop − h)) 11.01 for rate 1/17 m and

10.35 for rate 1/340 m

Table 3. Entries of the second column of the matrix M for the 706 data points. The

numerical values are based on htop = 1350 m and hbot = 675 m for cloud top and cloud

bottom (height above ground level). “MFRSR” indicates re retrieval from MFRSR

and MWR. “MMCR” indicates re retrieval from MMCR and MWR.
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Figure 2
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Figure 3
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Figure 4
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Figure 8
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